A Generalized Lucas Sequence and Permutation Binomials

نویسندگان

  • AMIR AKBARY
  • QIANG WANG
چکیده

Let p be an odd prime and q = pm. Let l be an odd positive integer. Let p ≡ −1 (mod l) or p ≡ 1 (mod l) and l | m. By employing the integer sequence an = l−1 2 ∑ t=1 ( 2 cos π(2t− 1) l )n , which can be considered as a generalized Lucas sequence, we construct all the permutation binomials P (x) = xr + xu of the finite field Fq .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Lucas sequences

We introduce the notions of unsigned and signed generalized Lucas sequences and prove certain polynomial recurrence relations on their characteristic polynomials. We also characterize when these characteristic polynomials are irreducible polynomials over a finite field. Moreover, we obtain the explicit expressions of the remainders of Dickson polynomials of the first kind divided by the charact...

متن کامل

New classes of permutation binomials and permutation trinomials over finite fields

Permutation polynomials over finite fields play important roles in finite fields theory. They also have wide applications in many areas of science and engineering such as coding theory, cryptography, combinational design, communication theory and so on. Permutation binomials and trinomials attract people’s interest due to their simple algebraic form and additional extraordinary properties. In t...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

The Number of Permutation Binomials over F4p+1 where p and 4p+1 are Primes

We give a characterization of permutation polynomials over a finite field based on their coefficients, similar to Hermite’s Criterion. Then, we use this result to obtain a formula for the total number of monic permutation binomials of degree less than 4p over F4p+1, where p and 4p + 1 are primes, in terms of the numbers of three special types of permutation binomials. We also briefly discuss th...

متن کامل

Generalized Stirling Numbers and Hyper-Sums of Powers of Binomials Coefficients

We work with a generalization of Stirling numbers of the second kind related to the boson normal ordering problem (P. Blasiak et al.). We show that these numbers appear as part of the coefficients of expressions in which certain sequences of products of binomials, together with their partial sums, are written as linear combinations of some other binomials. We show that the number arrays formed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006